Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

Cuprous oxide (Cu[subscript 2]O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu[subscript 2]O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall...

Full description

Bibliographic Details
Main Authors: Lee, Yun Seog, Winkler, Mark Thomas, Siah, Sin Cheng, Brandt, Riley E, Buonassisi, Anthony
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2013
Online Access:http://hdl.handle.net/1721.1/78003
https://orcid.org/0000-0003-2785-552X
https://orcid.org/0000-0001-8345-4937
Description
Summary:Cuprous oxide (Cu[subscript 2]O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu[subscript 2]O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu[subscript 2]O at temperatures above 250 K, reaching 62 cm[superscript 2]/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu[subscript 2]O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.