Bounds for graph regularity and removal lemmas

We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck [superscript 2]/log* k pairs of parts which are not ϵ -regular, where c,ϵ>0 are absolute constants. This bound is tight up to the constant c and addresses a...

Full description

Bibliographic Details
Main Authors: Conlon, David, Fox, Jacob
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Springer-Verlag 2013
Online Access:http://hdl.handle.net/1721.1/80769