Negative Regulation of Fibroblast Motility by Ena/VASP Proteins

Ena/VASP proteins have been implicated in cell motility through regulation of the actin cytoskeleton and are found at focal adhesions and the leading edge. Using overexpression, loss-of-function, and inhibitory approaches, we find that Ena/VASP proteins negatively regulate fibroblast motility. A dos...

Full description

Bibliographic Details
Main Authors: Libova, Irina, Bear, James E., Loureiro, Joseph J., Gertler, Frank, Fassler, Reinhard, Wehland, Jurgen
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: Elsevier 2014
Online Access:http://hdl.handle.net/1721.1/83484
https://orcid.org/0000-0003-3214-4554
Description
Summary:Ena/VASP proteins have been implicated in cell motility through regulation of the actin cytoskeleton and are found at focal adhesions and the leading edge. Using overexpression, loss-of-function, and inhibitory approaches, we find that Ena/VASP proteins negatively regulate fibroblast motility. A dose-dependent decrease in movement is observed when Ena/VASP proteins are overexpressed in fibroblasts. Neutralization or deletion of all Ena/VASP proteins results in increased cell movement. Selective depletion of Ena/VASP proteins from focal adhesions, but not the leading edge, has no effect on motility. Constitutive membrane targeting of Ena/VASP proteins inhibits motility. These results are in marked contrast to current models for Ena/VASP function derived mainly from their role in the actin-driven movement of Listeria monocytogenes.