Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm

We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best previous such result used exponentially many cuts. More precisely, given an orthogonal polyhedron with n vertices, the algorit...

Full description

Bibliographic Details
Main Authors: Damian, Mirela, Demaine, Erik D., Flatland, Robin
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Springer-Verlag 2014
Online Access:http://hdl.handle.net/1721.1/86067
https://orcid.org/0000-0003-3803-5703