CUR decomposition for compression and compressed sensing of large-scale traffic data
Intelligent Transportation Systems (ITS) often operate on large road networks, and typically collect traffic data with high temporal resolution. Consequently, ITS need to handle massive volumes of data, and methods to represent that data in more compact representations are sorely needed. Subspace me...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/86879 https://orcid.org/0000-0002-8585-6566 |