Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures wit...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Mueller, Timothy K., Grossman, Jeffrey C., Johlin, Eric Carl
מחברים אחרים: Massachusetts Institute of Technology. Department of Materials Science and Engineering
פורמט: Article
שפה:en_US
יצא לאור: American Physical Society 2014
גישה מקוונת:http://hdl.handle.net/1721.1/88769
https://orcid.org/0000-0003-1281-2359