Learning Sparse Gaussian Graphical Model with l0-regularization

For the problem of learning sparse Gaussian graphical models, it is desirable to obtain both sparse structures as well as good parameter estimates. Classical techniques, such as optimizing the l1-regularized maximum likelihood or Chow-Liu algorithm, either focus on parameter estimation or constrain...

全面介紹

書目詳細資料
Main Authors: Mu, Beipeng, How, Jonathan
格式: Article
語言:en_US
出版: 2014
主題:
在線閱讀:http://hdl.handle.net/1721.1/88969