Mechanotransduction of fluid stresses governs 3D cell migration

Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ∼3 µm/s has been shown to induce cell migration in the upstream direction (rheotaxis). However, the molecular biophysical mechanism...

Full description

Bibliographic Details
Main Authors: Polacheck, William J., German, Alexandra E., Mammoto, Akiko, Ingber, Donald E., Kamm, Roger Dale
Other Authors: Harvard University--MIT Division of Health Sciences and Technology
Format: Article
Language:en_US
Published: National Academy of Sciences (U.S.) 2014
Online Access:http://hdl.handle.net/1721.1/90327
https://orcid.org/0000-0003-2728-0746
https://orcid.org/0000-0002-7232-304X
Description
Summary:Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ∼3 µm/s has been shown to induce cell migration in the upstream direction (rheotaxis). However, the molecular biophysical mechanism that underlies upstream cell polarization and rheotaxis remains unclear. We developed a microfluidic platform to investigate the effects of IF fluid stresses imparted on cells embedded within a collagen type I hydrogel, and we demonstrate that IF stresses result in a transcellular gradient in β1-integrin activation with vinculin, focal adhesion kinase (FAK), FAK[superscript PY397], F actin, and paxillin-dependent protrusion formation localizing to the upstream side of the cell, where matrix adhesions are under maximum tension. This previously unknown mechanism is the result of a force balance between fluid drag on the cell and matrix adhesion tension and is therefore a fundamental, but previously unknown, stimulus for directing cell movement within porous extracellular matrix.