Learning with Hierarchical-Deep Models

We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level...

ver descrição completa

Detalhes bibliográficos
Principais autores: Salakhutdinov, R., Tenenbaum, Joshua B., Torralba, Antonio
Outros Autores: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Formato: Artigo
Idioma:en_US
Publicado em: Institute of Electrical and Electronics Engineers (IEEE) 2014
Acesso em linha:http://hdl.handle.net/1721.1/90947
https://orcid.org/0000-0002-1925-2035
https://orcid.org/0000-0003-4915-0256