High mobility In[subscript 0.53]Ga[subscript 0.47]As quantum-well metal oxide semiconductor field effect transistor structures

In this paper, we demonstrate high electron mobility In[subscript 0.53]Ga[subscript 0.47]As quantum-well metal oxide semiconductor field effect transistor(MOSFET)structures. The Al[subscript 2]O[subscript 3] (gate dielectric)/In[subscript 0.53]Ga[subscript 0.47]As-In[subscript 0.52]Al[subscript 0.48...

Full description

Bibliographic Details
Main Authors: Yang, Li, Cheng, Cheng-Wei, Bulsara, Mayank, Fitzgerald, Eugene A.
Other Authors: MIT Materials Research Laboratory
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2014
Online Access:http://hdl.handle.net/1721.1/91922
https://orcid.org/0000-0002-1891-1959
Description
Summary:In this paper, we demonstrate high electron mobility In[subscript 0.53]Ga[subscript 0.47]As quantum-well metal oxide semiconductor field effect transistor(MOSFET)structures. The Al[subscript 2]O[subscript 3] (gate dielectric)/In[subscript 0.53]Ga[subscript 0.47]As-In[subscript 0.52]Al[subscript 0.48]As (barrier)/In[subscript 0.53]Ga[subscript 0.47]As (channel) structures were fabricated, and the mobility was obtained by Hall measurements. The structures with in-situchemical vapor deposition(CVD)Al[subscript 2]O[subscript 3] displayed higher mobility than identical structures fabricated with in situ atomic layer deposition Al[subscript 2]O[subscript 3], which indicates that CVD process resulted in a lower Al[subscript 2]O[subscript 3]/In[subscript 0.53]Ga[subscript 0.47]As interfacial defect density. A gate bias was applied to the structure with CVDAl[subscript 2]O[subscript 3], and a peak mobility of 9243 cm[superscript 2]/V s at a carrier density of 2.7 × 10[superscript 12] cm[superscript −2] was demonstrated for the structure with a 4 nm In[subscript 0.53]Ga[subscript 0.47]As-In[subscript 0.52]Al[subscript 0.48]As barrier. A model based on internal phonon scattering and interfacial defect coulomb scattering was developed to explain the experimental data and predict the mobility of In[subscript 0.53]Ga[subscript 0.47]As MOSFETstructures.