A Sensitive Chemotaxis Assay Using a Novel Microfluidic Device
Existing chemotaxis assays do not generate stable chemotactic gradients and thus—over time—functionally measure only nonspecific random motion (chemokinesis). In comparison, microfluidic technology has the capacity to generate a tightly controlled microenvironment that can be stably maintained for e...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Hindawi Publishing Corporation
2015
|
Online Access: | http://hdl.handle.net/1721.1/96105 |