Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherich...

Full description

Bibliographic Details
Main Authors: Baker, David, Ting, Alice Y., Liu, Daniel S., Nivon, Lucas G., Richter, Florian, Goldman, Peter J., Yao, Jennifer Z., Phipps, William S., Ye, Anne Z., Deerinck, Thomas J., Richardson, Douglas, Ellisman, Mark H., Drennan, Catherine L
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: National Academy of Sciences (U.S.) 2015
Online Access:http://hdl.handle.net/1721.1/96304
https://orcid.org/0000-0001-5486-2755
https://orcid.org/0000-0002-8277-5226
_version_ 1811070526604443648
author Baker, David
Ting, Alice Y.
Liu, Daniel S.
Nivon, Lucas G.
Richter, Florian
Goldman, Peter J.
Yao, Jennifer Z.
Phipps, William S.
Ye, Anne Z.
Deerinck, Thomas J.
Richardson, Douglas
Ellisman, Mark H.
Drennan, Catherine L
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Baker, David
Ting, Alice Y.
Liu, Daniel S.
Nivon, Lucas G.
Richter, Florian
Goldman, Peter J.
Yao, Jennifer Z.
Phipps, William S.
Ye, Anne Z.
Deerinck, Thomas J.
Richardson, Douglas
Ellisman, Mark H.
Drennan, Catherine L
author_sort Baker, David
collection MIT
description Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.
first_indexed 2024-09-23T08:37:26Z
format Article
id mit-1721.1/96304
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:37:26Z
publishDate 2015
publisher National Academy of Sciences (U.S.)
record_format dspace
spelling mit-1721.1/963042022-09-30T10:01:22Z Computational design of a red fluorophore ligase for site-specific protein labeling in living cells Baker, David Ting, Alice Y. Liu, Daniel S. Nivon, Lucas G. Richter, Florian Goldman, Peter J. Yao, Jennifer Z. Phipps, William S. Ye, Anne Z. Deerinck, Thomas J. Richardson, Douglas Ellisman, Mark H. Drennan, Catherine L Massachusetts Institute of Technology. Department of Biology Massachusetts Institute of Technology. Department of Chemistry Drennan, Catherine L. Ting, Alice Y. Liu, Daniel S. Yao, Jennifer Z. Phipps, William S. Ye, Anne Z. Goldman, Peter J. Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. National Institutes of Health (U.S.) (Grant DP1 OD003961) National Institutes of Health (U.S.) (R01 GM072670) American Chemical Society 2015-04-01T15:48:59Z 2015-04-01T15:48:59Z 2014-10 2014-03 Article http://purl.org/eprint/type/JournalArticle 0027-8424 1091-6490 http://hdl.handle.net/1721.1/96304 Liu, D. S., L. G. Nivon, F. Richter, P. J. Goldman, T. J. Deerinck, J. Z. Yao, D. Richardson, et al. “Computational Design of a Red Fluorophore Ligase for Site-Specific Protein Labeling in Living Cells.” Proceedings of the National Academy of Sciences 111, no. 43 (October 13, 2014): E4551–E4559. https://orcid.org/0000-0001-5486-2755 https://orcid.org/0000-0002-8277-5226 en_US http://dx.doi.org/10.1073/pnas.1404736111 Proceedings of the National Academy of Sciences of the United States of America Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf National Academy of Sciences (U.S.) National Academy of Sciences (U.S.)
spellingShingle Baker, David
Ting, Alice Y.
Liu, Daniel S.
Nivon, Lucas G.
Richter, Florian
Goldman, Peter J.
Yao, Jennifer Z.
Phipps, William S.
Ye, Anne Z.
Deerinck, Thomas J.
Richardson, Douglas
Ellisman, Mark H.
Drennan, Catherine L
Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title_full Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title_fullStr Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title_full_unstemmed Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title_short Computational design of a red fluorophore ligase for site-specific protein labeling in living cells
title_sort computational design of a red fluorophore ligase for site specific protein labeling in living cells
url http://hdl.handle.net/1721.1/96304
https://orcid.org/0000-0001-5486-2755
https://orcid.org/0000-0002-8277-5226
work_keys_str_mv AT bakerdavid computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT tingalicey computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT liudaniels computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT nivonlucasg computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT richterflorian computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT goldmanpeterj computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT yaojenniferz computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT phippswilliams computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT yeannez computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT deerinckthomasj computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT richardsondouglas computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT ellismanmarkh computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells
AT drennancatherinel computationaldesignofaredfluorophoreligaseforsitespecificproteinlabelinginlivingcells