Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile

Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here, we report that long-term CR in humans inhibits the IGF-1/i...

Full description

Bibliographic Details
Main Authors: Mercken, Evi M., Crosby, Seth D., Lamming, Dudley W., JeBailey, Lellean, Krzysik-Walker, Susan, Villareal, Dennis T., Capri, Miriam, Franceschi, Claudio, Zhang, Yongqing, Becker, Kevin, de Cabo, Rafael, Fontana, Luigi, Sabatini, David
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: Wiley Blackwell 2015
Online Access:http://hdl.handle.net/1721.1/96746
https://orcid.org/0000-0002-0079-4467
https://orcid.org/0000-0002-1446-7256
_version_ 1826207782165020672
author Mercken, Evi M.
Crosby, Seth D.
Lamming, Dudley W.
JeBailey, Lellean
Krzysik-Walker, Susan
Villareal, Dennis T.
Capri, Miriam
Franceschi, Claudio
Zhang, Yongqing
Becker, Kevin
de Cabo, Rafael
Fontana, Luigi
Sabatini, David
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Mercken, Evi M.
Crosby, Seth D.
Lamming, Dudley W.
JeBailey, Lellean
Krzysik-Walker, Susan
Villareal, Dennis T.
Capri, Miriam
Franceschi, Claudio
Zhang, Yongqing
Becker, Kevin
de Cabo, Rafael
Fontana, Luigi
Sabatini, David
author_sort Mercken, Evi M.
collection MIT
description Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here, we report that long-term CR in humans inhibits the IGF-1/insulin pathway in skeletal muscle, a key metabolic tissue. We also demonstrate that CR induces dramatic changes of the skeletal muscle transcriptional profile that resemble those of younger individuals. Finally, in both rats and humans, CR evoked similar responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with longevity: IGF-1/insulin signaling, mitochondrial biogenesis, and inflammation. Furthermore, our data identify promising pathways for therapeutic targets to combat age-related diseases and promote health in humans.
first_indexed 2024-09-23T13:54:52Z
format Article
id mit-1721.1/96746
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:54:52Z
publishDate 2015
publisher Wiley Blackwell
record_format dspace
spelling mit-1721.1/967462022-09-28T17:01:39Z Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile Mercken, Evi M. Crosby, Seth D. Lamming, Dudley W. JeBailey, Lellean Krzysik-Walker, Susan Villareal, Dennis T. Capri, Miriam Franceschi, Claudio Zhang, Yongqing Becker, Kevin de Cabo, Rafael Fontana, Luigi Sabatini, David Massachusetts Institute of Technology. Department of Biology Whitehead Institute for Biomedical Research Koch Institute for Integrative Cancer Research at MIT Lamming, Dudley W. Sabatini, David M. Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here, we report that long-term CR in humans inhibits the IGF-1/insulin pathway in skeletal muscle, a key metabolic tissue. We also demonstrate that CR induces dramatic changes of the skeletal muscle transcriptional profile that resemble those of younger individuals. Finally, in both rats and humans, CR evoked similar responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with longevity: IGF-1/insulin signaling, mitochondrial biogenesis, and inflammation. Furthermore, our data identify promising pathways for therapeutic targets to combat age-related diseases and promote health in humans. American Federation for Aging Research National Center for Research Resources (U.S.) (Grant UL1 RR024992) National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant P30DK056341) 2015-04-23T17:39:19Z 2015-04-23T17:39:19Z 2013-06 2013-04 Article http://purl.org/eprint/type/JournalArticle 14749718 1474-9728 http://hdl.handle.net/1721.1/96746 Mercken, Evi M., Seth D. Crosby, Dudley W. Lamming, Lellean JeBailey, Susan Krzysik-Walker, Dennis T. Villareal, Miriam Capri, et al. “Calorie Restriction in Humans Inhibits the PI3K/AKT Pathway and Induces a Younger Transcription Profile.” Aging Cell 12, no. 4 (June 5, 2013): 645–651. © 2013 John Wiley & Sons Ltd and the Anatomical Society https://orcid.org/0000-0002-0079-4467 https://orcid.org/0000-0002-1446-7256 en_US http://dx.doi.org/10.1111/acel.12088 Aging Cell Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/ application/pdf Wiley Blackwell Wiley
spellingShingle Mercken, Evi M.
Crosby, Seth D.
Lamming, Dudley W.
JeBailey, Lellean
Krzysik-Walker, Susan
Villareal, Dennis T.
Capri, Miriam
Franceschi, Claudio
Zhang, Yongqing
Becker, Kevin
de Cabo, Rafael
Fontana, Luigi
Sabatini, David
Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title_full Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title_fullStr Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title_full_unstemmed Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title_short Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile
title_sort calorie restriction in humans inhibits the pi3k akt pathway and induces a younger transcription profile
url http://hdl.handle.net/1721.1/96746
https://orcid.org/0000-0002-0079-4467
https://orcid.org/0000-0002-1446-7256
work_keys_str_mv AT merckenevim calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT crosbysethd calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT lammingdudleyw calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT jebaileylellean calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT krzysikwalkersusan calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT villarealdennist calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT caprimiriam calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT franceschiclaudio calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT zhangyongqing calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT beckerkevin calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT decaborafael calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT fontanaluigi calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile
AT sabatinidavid calorierestrictioninhumansinhibitsthepi3kaktpathwayandinducesayoungertranscriptionprofile