Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding
Conventional quantum key distribution (QKD) typically uses binary encoding based on photon polarization or time-bin degrees of freedom and achieves a key capacity of at most one bit per photon. Under photon-starved conditions the rate of detection events is much lower than the photon generation rate...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
IOP Publishing
2015
|
Online Access: | http://hdl.handle.net/1721.1/96805 https://orcid.org/0000-0002-5125-8023 https://orcid.org/0000-0003-1998-6159 https://orcid.org/0000-0002-6094-5861 https://orcid.org/0000-0002-8668-8162 https://orcid.org/0000-0001-9166-4758 |