Synthetic Methods for the Preparation of Platinum Anticancer Complexes
The demonstration in the 1960s that cis-diammine-dichloroplatinum(II), or cisplatin, inhibits cellular division of Escherichia coli led to the subsequent discovery that this simple coordination compound is also an effective antitumor agent in mouse models. Subsequent studies validated cisplatin as a...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Chemical Society (ACS)
2015
|
Online Access: | http://hdl.handle.net/1721.1/96862 https://orcid.org/0000-0002-2693-4982 |
Summary: | The demonstration in the 1960s that cis-diammine-dichloroplatinum(II), or cisplatin, inhibits cellular division of Escherichia coli led to the subsequent discovery that this simple coordination compound is also an effective antitumor agent in mouse models. Subsequent studies validated cisplatin as an effective anticancer agent in humans as well, and FDA approval of cisplatin for the treatment of metastatic ovarian and testicular cancers was granted in 1978. Its introduction as a chemotherapeutic agent significantly improved the survival outlook for many cancer patients; the cure rate for testicular cancer before the approval of cisplatin was less than 10%, significantly lower than the 90% cure rate attained with modern platinum chemotherapy. |
---|