Efficient CRISPR/Cas9-mediated genome editing in P. falciparum

Malaria is a major cause of global morbidity and mortality, and new strategies for treating and preventing this disease are needed. Here we show that the Streptococcus pyogenes Cas9 DNA endonuclease and single guide RNAs (sgRNAs) produced using T7 RNA polymerase (T7 RNAP) efficiently edit the Plasmo...

Full description

Bibliographic Details
Main Authors: Zhang, Feng, Wagner, Jeffrey C., Platt, Randall Jeffrey, Goldfless, Stephen J., Niles, Jacquin
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: Nature Publishing Group 2015
Online Access:http://hdl.handle.net/1721.1/99501
https://orcid.org/0000-0003-2782-2509
https://orcid.org/0000-0002-6250-8796
Description
Summary:Malaria is a major cause of global morbidity and mortality, and new strategies for treating and preventing this disease are needed. Here we show that the Streptococcus pyogenes Cas9 DNA endonuclease and single guide RNAs (sgRNAs) produced using T7 RNA polymerase (T7 RNAP) efficiently edit the Plasmodium falciparum genome. Targeting the genes encoding native knob-associated histidine-rich protein (kahrp) and erythrocyte binding antigen 175 (eba-175), we achieved high (≥50–100%) gene disruption frequencies within the usual time frame for generating transgenic parasites.