On a lower bound for the Laplacian eigenvalues of a graph

If μm and dm denote, respectively, the m-th largest Laplacian eigenvalue and the m-th largest vertex degree of a graph, then μm⩾dm−m+2. This inequality was conjectured by Guo (Linear Multilinear Algebra 55:93–102, 2007) and proved by Brouwer and Haemers (Linear Algebra Appl 429:2131–2135, 2008). Bro...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Greaves, Gary Royden Watson, Munemasa, Akihiro, Peng, Anni
Övriga upphovsmän: School of Physical and Mathematical Sciences
Materialtyp: Journal Article
Språk:English
Publicerad: 2020
Ämnen:
Länkar:https://hdl.handle.net/10356/144996