On a lower bound for the Laplacian eigenvalues of a graph
If μm and dm denote, respectively, the m-th largest Laplacian eigenvalue and the m-th largest vertex degree of a graph, then μm⩾dm−m+2. This inequality was conjectured by Guo (Linear Multilinear Algebra 55:93–102, 2007) and proved by Brouwer and Haemers (Linear Algebra Appl 429:2131–2135, 2008). Bro...
Huvudupphovsmän: | , , |
---|---|
Övriga upphovsmän: | |
Materialtyp: | Journal Article |
Språk: | English |
Publicerad: |
2020
|
Ämnen: | |
Länkar: | https://hdl.handle.net/10356/144996 |