Bayesian filtering with unknown sensor measurement losses

This paper studies the state estimation problem of a stochastic nonlinear system with unknown sensor measurement losses. If the estimator knows the sensor measurement losses of a linear Gaussian system, the minimum variance estimate is easily computed by the celebrated intermittent Kalman filter (IK...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Zhang, Jiaqi, You, Keyou, Xie, Lihua
Muut tekijät: School of Electrical and Electronic Engineering
Aineistotyyppi: Journal Article
Kieli:English
Julkaistu: 2020
Aiheet:
Linkit:https://hdl.handle.net/10356/145323