Bayesian filtering with unknown sensor measurement losses
This paper studies the state estimation problem of a stochastic nonlinear system with unknown sensor measurement losses. If the estimator knows the sensor measurement losses of a linear Gaussian system, the minimum variance estimate is easily computed by the celebrated intermittent Kalman filter (IK...
Päätekijät: | , , |
---|---|
Muut tekijät: | |
Aineistotyyppi: | Journal Article |
Kieli: | English |
Julkaistu: |
2020
|
Aiheet: | |
Linkit: | https://hdl.handle.net/10356/145323 |