Pedestrian heading estimation based on spatial transformer networks and hierarchical LSTM
Accurate heading estimation is the foundation of numerous applications, including augmented reality, pedestrian dead reckoning, and human-computer interactions. While magnetometer is a key source of heading information, the poor accuracy of consumer-grade hardware coupled with the pervasive magnetic...
Päätekijät: | Wang, Qu, Luo, Haiyong, Ye, Langlang, Men, Aidong, Zhao, Fang, Huang, Yan, Ou, Changhai |
---|---|
Muut tekijät: | School of Computer Science and Engineering |
Aineistotyyppi: | Journal Article |
Kieli: | English |
Julkaistu: |
2021
|
Aiheet: | |
Linkit: | https://hdl.handle.net/10356/145757 |
Samankaltaisia teoksia
-
Pedestrian walking distance estimation based on smartphone mode recognition
Tekijä: Wang, Qu, et al.
Julkaistu: (2019) -
Toward human-centered automated driving: a novel spatiotemporal vision transformer-enabled head tracker
Tekijä: Hu, Zhongxu, et al.
Julkaistu: (2022) -
Indoor Tracking With the Generalized t-Distribution Noise Model
Tekijä: Yin, Le, et al.
Julkaistu: (2017) -
Attitude and Heading Estimation for Indoor Positioning Based on the Adaptive Cubature Kalman Filter
Tekijä: Jijun Geng, et al.
Julkaistu: (2021-01-01) -
A Hierarchical Prediction Method for Pedestrian Head Injury in Intelligent Vehicle with Combined Active and Passive Safety System
Tekijä: Liangliang Shi, et al.
Julkaistu: (2024-02-01)