A hierarchical framework for collaborative probabilistic semantic mapping
Performing collaborative semantic mapping is a critical challenge for cooperative robots to maintain a comprehensive contextual understanding of the surroundings. Most of the existing work either focus on single robot semantic mapping or collaborative geometry mapping. In this paper, a novel hierarc...
Główni autorzy: | Yue, Yufeng, Zhao, Chunyang, Li, Ruilin, Yang, Chule, Zhang, Jun, Wen, Mingxing, Wang, Yuanzhe, Wang, Danwei |
---|---|
Kolejni autorzy: | School of Electrical and Electronic Engineering |
Format: | Conference Paper |
Język: | English |
Wydane: |
2021
|
Hasła przedmiotowe: | |
Dostęp online: | https://hdl.handle.net/10356/147250 |
Podobne zapisy
-
Collaborative semantic understanding and mapping framework for autonomous systems
od: Yue, Yufeng, i wsp.
Wydane: (2021) -
Probabilistic 3D semantic map fusion based on Bayesian rule
od: Yue, Yufeng, i wsp.
Wydane: (2021) -
Probabilistic reasoning for unique role recognition based on the fusion of semantic-interaction and spatio-temporal features
od: Yang, Chule, i wsp.
Wydane: (2019) -
Day and night collaborative dynamic mapping in unstructured environment based on multimodal sensors
od: Yue, Yufeng, i wsp.
Wydane: (2021) -
Hierarchical probabilistic fusion framework for matching and merging of 3-D occupancy maps
od: Yue, Yufeng, i wsp.
Wydane: (2019)