Increasing interpretability using a fuzzy-embedded recurrent neural network (FE-RNN) with its application in stock ETF trading
Deep learning has been a recent breakthrough that has enabled predictions and modelling to be very accurate. These predictions and modelling tools were once used to help us understand our data and serve as a tool to make a judgement. However, the vast improvements in these deep learning structures...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/148790 |