An unsupervised Bayesian neural network for truth discovery in social networks
The problem of estimating event truths from conflicting agent opinions in a social network is investigated. An autoencoder learns the complex relationships between event truths, agent reliabilities and agent observations. A Bayesian network model is proposed to guide the learning process by modeling...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/153704 |