Advantages of direct input-to-output connections in neural networks : the Elman network for stock index forecasting
The Elman neural network (ElmanNN) is well-known for its capability of processing dynamic information, which has led to successful applications in stock forecasting. In this paper, we introduce direct input-to-output connections (DIOCs) into the ElmanNN and show that the proposed Elman neural networ...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154501 |