Game-theoretic inverse reinforcement learning: a differential pontryagin's maximum principle approach

This paper proposes a game-theoretic inverse reinforcement learning (GT-IRL) framework, which aims to learn the parameters in both the dynamic system and individual cost function of multistage games from demonstrated trajectories. Different from the probabilistic approaches in computer science commu...

Olles dieđut

Bibliográfalaš dieđut
Váldodahkkit: Cao, Kun, Xie, Lihua
Eará dahkkit: School of Electrical and Electronic Engineering
Materiálatiipa: Journal Article
Giella:English
Almmustuhtton: 2022
Fáttát:
Liŋkkat:https://hdl.handle.net/10356/162585