A hybrid neuromorphic object tracking and classification framework for real-time systems
Deep learning inference that needs to largely take place on the "edge" is a highly computational and memory intensive workload, making it intractable for low-power, embedded platforms such as mobile nodes and remote security applications. To address this challenge, this article proposes a...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170575 |