Deep neural networks for creating reliable PmP database with a case study in Southern California
Recent progresses in artificial intelligence and machine learning make it possible to automatically identify seismic phases from exponentially growing seismic data. Despite some exciting successes in automatic picking of the first P- and S-wave arrivals, auto-identification of later seismic phase...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170958 |