Deep transfer learning on continual learning
Artificial intelligent agents acting in the real world interact with a multitude of data streams. As a result, they must attain, accumulate and record various tasks from non-stationary data distributions. In addition, self-governing computational agents must acquire an understanding of new experienc...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171082 |