基于深度学习的 LSTM 模型在 X 荧光光谱中的应用 = Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy
在X荧光光谱分析中,为了解决传统谱分析方法中存在的特征峰计数率损失以及影子峰的问题,本文拟采用一种基于深度学习的长短期记忆(Long and Short Term Memory,LSTM)神经网络模型,该模型对核脉冲幅度时间序列具有较好的适用性,通过对样本的学习能够对核脉冲信号的幅度进行准确估计。鉴于核脉冲信号样本较大,模型训练效率低,特引入卷积神经网络(Convolutional Neural Network, CNN),利用其特有的卷积核结构逐层提取样本特征,能够有效减少样本数量,降低模型训练复杂度。使用粉末铁矿样品测量得到的一系列离线核脉冲序列产生模型训练所需的数据集,该数据集的6400...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | Chinese |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/173545 |