Stealthy and robust backdoor attack on deep neural networks based on data augmentation

This work proposes to use data augmentation for backdoor attacks to increase the stealth, attack success rate, and robustness. Different data augmentation techniques are applied independently on three color channels to embed a composite trigger. The data augmentation strength is tuned based on the G...

Descripció completa

Dades bibliogràfiques
Autors principals: Xu, Chaohui, Chang, Chip Hong
Altres autors: School of Electrical and Electronic Engineering
Format: Conference Paper
Idioma:English
Publicat: 2024
Matèries:
Accés en línia:https://hdl.handle.net/10356/174145
https://ieee-ceda.org/event/2022-asian-hardware-oriented-security-and-trust-symposium