MAE-VQA: an efficient and accurate end-to-end video quality assessment method for user generated content videos
In the digital age, the proliferation of user-generated content (UGC) videos presents unique challenges in maintaining video quality across diverse platforms. In this project, we propose Masked Auto-Encoder model for no-reference video quality assessment (NR-VQA) problem. To our best knowledge, we a...
Autor principal: | |
---|---|
Altres autors: | |
Format: | Final Year Project (FYP) |
Idioma: | English |
Publicat: |
Nanyang Technological University
2024
|
Matèries: | |
Accés en línia: | https://hdl.handle.net/10356/178566 |