Out of distribution reasoning by weakly-supervised disentangled logic variational autoencoder
Out-of-distribution (OOD) detection, i.e., finding test samples derived from a different distribution than the training set, as well as reasoning about such samples (OOD reasoning), are necessary to ensure the safety of results generated by machine learning models. Recently there have been promising...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/178684 |