Leveraging imperfect restoration for data availability attack
The abundance of online data is at risk of unauthorized usage in training deep learning models. To counter this, various Data Availability Attacks (DAAs) have been devised to make data unlearnable for such models by subtly perturbing the training data. However, existing attacks often excel against e...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/179131 https://eccv.ecva.net/virtual/2024/poster/1216 |