Factory AGV detection and obstacle avoidance program design based on YOLOv8

This dissertation investigates and realizes a multi-sensor fusion-based path planning and obstacle avoidance system for automated guided vehicles (AGVs) in factory scenarios. The system combines LiDAR, IMU, and camera sensors for target detection via YOLOv8, and utilizes LIO-SAM and AMCL for high-pr...

Descripció completa

Dades bibliogràfiques
Autor principal: Xu, Shuo
Altres autors: Hu Guoqiang
Format: Thesis-Master by Coursework
Idioma:English
Publicat: Nanyang Technological University 2024
Matèries:
Accés en línia:https://hdl.handle.net/10356/179796