Improving collaborative filtering with self-supervised GCNS and autoencoder base multimodal embeddings
Recommender systems play a crucial role in enhancing user experience by delivering personalized suggestions across diverse domains. Effective representation learning is vital in these systems, as high-quality embeddings are key to accurate recommendations, as evidenced by various studies. However, c...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180714 |