A cost-aware utility-maximizing bidding strategy for auction-based federated learning
Auction-based federated learning (AFL) has emerged as an efficient and fair approach to incentivize data owners (DOs) to contribute to federated model training, garnering extensive interest. However, the important problem of helping data consumers (DCs) bid for DOs in competitive AFL settings remain...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2025
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/182317 |