Novel biomechatronics approach for non-invasive surgery under hybrid supervisory control

There are many medical robotic systems available in the market and each adopts a different control strategy. Due to the diversities of the control strategies, various safety regimens have been stipulated by various research groups, without any unified resolution. Hence, for the purpose of developing...

Full description

Bibliographic Details
Main Author: Swandito.
Other Authors: Chauhan, Sunita
Format: Thesis
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10356/6423
Description
Summary:There are many medical robotic systems available in the market and each adopts a different control strategy. Due to the diversities of the control strategies, various safety regimens have been stipulated by various research groups, without any unified resolution. Hence, for the purpose of developing or deducing the safety regulations for a range of medical robots and for inducing shorter development time, a common and optimal control hierarchy and strategy is desired. In order to achieve this objective, a supervisory hybrid control using model-based and Proportional-Integral-Derivative (PID) approach is proposed in this project. A medical robotic system called FUSBOT-BS (Focused Ultrasound Surgery Robot – Breast Surgery), devised at the Biomechatronic group, RRC, NTU was used for the proposed control implementation and experimental validation. Accuracy, stability and repeatability tests were subsequently done to assess the performance of the control strategy. Data analysis of the results led to a favorable conclusion, which was in line with the original hypothesis. The proposed control strategy has a high potential as a unified control strategy for a range of non-invasive medical systems.