Molecular generation using gated graph convolutional neural networks and reinforcement learning
The design of molecules with bespoke chemical properties has wide-ranging applications in materials science, chemistry and drug-discovery. This can be formulated as a supervised learning problem, where we first seek to encode discrete molecular graphs to continuous latent representations, and then u...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/76936 |