Polynomial-time computing over quadratic maps I : sampling in real algebraic sets
Given a quadratic map Q : Kn → Kk defined over a computable subring D of a real closed field K, and p ∈ D[Y1,..., Yk] of degree d we consider the zero set Z = Z(p(Q(X)),Kn) ⊆ Kn of p(Q(X1,..., Xn)) ∈ D[X1,..., Xn]. We present a procedure that com¬putes, in (dn)O(k) arithmetic operations in D, a set...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/92360 http://hdl.handle.net/10220/6869 |