A Bayesian nonparametric approach to tumor detection using UWB imaging
We develop a tumor detection and discrimination algorithm for Ultra-Wideband (UWB) microwave imaging of breast cancer based on a Bayesian nonparametric approach. We model the UWB backscattered signal as a mixture of distinct scatterer contributions, and use a Dirichlet Process mixture model (DPMM) t...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/99490 http://hdl.handle.net/10220/12892 |