Learning affordances in object-centric generative models
Given visual observations of a reaching task together with a stick-like tool, we propose a novel approach that learns to exploit task-relevant object affordances by combining generative modelling with a task-based performance predictor. The embedding learned by the generative model captures the fact...
Autori principali: | Wu, Y, Kasewa, S, Groth, O, Salter, S, Sun, L, Parker Jones, O, Posner, H |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
International Conference on Machine Learning
2020
|
Documenti analoghi
-
Reconstruction bottlenecks in object-centric generative models
di: Engelcke, M, et al.
Pubblicazione: (2020) -
GENESIS: generative scene inference and sampling of object-centric latent representations
di: Engelcke, M, et al.
Pubblicazione: (2020) -
APEX: Unsupervised, object-centric scene segmentation and tracking for robot manipulation
di: Wu, Y, et al.
Pubblicazione: (2021) -
Object-centric generative models for robot perception and action
di: Wu, Y
Pubblicazione: (2023) -
DreamUp3D: object-centric generative models for single-view 3D scene understanding and real-to-sim transfer
di: Wu, Y, et al.
Pubblicazione: (2024)