Markov abstractions for PAC reinforcement learning in non-Markov decision processes

Our work aims at developing reinforcement learning algorithms that do not rely on the Markov assumption. We consider the class of Non-Markov Decision Processes where histories can be abstracted into a finite set of states while preserving the dynamics. We call it a Markov abstraction since it induce...

Полное описание

Библиографические подробности
Главные авторы: Ronca, A, Licks, GP, De Giacomo, G
Формат: Conference item
Язык:English
Опубликовано: International Joint Conferences on Artificial Intelligence 2022