Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor
We present a general framework for automatic segmentation of fetal brain structures in ultrasound images inspired by recent advances in machine learning. The approach is based on a region descriptor that characterizes the shape and local intensity context of different neurological structures without...
主要な著者: | Huang, R, Namburete, A, Noble, J |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Society of Photo-optical Instrumentation Engineers
2018
|
類似資料
-
Data for paper 'Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor'
著者:: Huang, R, 等
出版事項: (2018) -
Robust regression of brain maturation from 3D fetal neurosonography using CRNs
著者:: Namburete, A, 等
出版事項: (2017) -
BEAN: brain extraction and alignment network for 3D fetal neurosonography
著者:: Moser, F, 等
出版事項: (2022) -
VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography
著者:: Huang, R, 等
出版事項: (2018) -
BEAN: Brain Extraction and Alignment Network for 3D Fetal Neurosonography
著者:: Felipe Moser, 等
出版事項: (2022-09-01)