Deep spectral methods: a surprisingly strong baseline for unsupervised semantic segmentation and localization
Unsupervised localization and segmentation are long-standing computer vision challenges that involve decom-posing an image into semantically meaningful segments without any labeled data. These tasks are particularly interesting in an unsupervised setting due to the difficulty and cost of obtaining d...
Auteurs principaux: | Melas-Kyriazi, L, Rupprecht, C, Laina, I, Vedaldi, A |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
IEEE
2022
|
Documents similaires
-
Finding an unsupervised image segmenter in each of your deep generative models
par: Melas-Kyriazi, L, et autres
Publié: (2021) -
RealFusion: 360 reconstruction of any object from a single image
par: Melas-Kyriazi, L, et autres
Publié: (2023) -
Unsupervised multi-object segmentation by predicting probable motion patterns
par: Karazija, L, et autres
Publié: (2022) -
Guess what moves: unsupervised video and image segmentation by anticipating motion
par: Choudhury, S, et autres
Publié: (2022) -
Unsupervised part discovery from contrastive reconstruction
par: Choudhury, S, et autres
Publié: (2021)