Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automat...
Автори: | Bastiani, M, Cottaar, M, Fitzgibbon, S, Suri, S, Alfaro-Almagro, F, Sotiropoulos, S, Jbabdi, S, Andersson, J |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Elsevier
2018
|
Схожі ресурси
Схожі ресурси
-
Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
за авторством: Andersson, J, та інші
Опубліковано: (2016) -
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
за авторством: Andersson, J, та інші
Опубліковано: (2017) -
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
за авторством: Bastiani, M, та інші
Опубліковано: (2018) -
Joint modelling of diffusion MRI and microscopy
за авторством: Howard, A, та інші
Опубліковано: (2019) -
Modelling fibre fanning in diffusion-weighted MRI.
за авторством: Sotiropoulos, SN, та інші
Опубліковано: (2012)