On the stability of computing polynomial roots via confederate linearizations
<p style="text-align:justify;"> A common way of computing the roots of a polynomial is to find the eigenvalues of a linearization, such as the companion (when the polynomial is expressed in the monomial basis), colleague (Chebyshev basis) or comrade matrix (general orthogonal polyn...
Auteurs principaux: | Nakatsukasa, Y, Noferini, V |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
American Mathematical Society
2015
|
Documents similaires
-
Vector spaces of linearizations for matrix polynomials: A bivariate polynomial approach
par: Nakatsukasa, Y, et autres
Publié: (2017) -
Vector spaces of linearizations for matrix polynomials: A bivariate polynomial approach
par: Townsend, A, et autres
Publié: (2012) -
Computing the common zeros of two bivariate functions via Bezout resultants
par: Nakatsukasa, Y, et autres
Publié: (2013) -
On Robust Stability for Hurwitz Polynomials via Recurrence Relations and Linear Combinations of Orthogonal Polynomials
par: Alejandro Arceo, et autres
Publié: (2022-01-01) -
Engineering confederalism for Iraq
par: Khan, Shamsul, et autres
Publié: (2015)