Teaching machines to read and comprehend
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type o...
Главные авторы: | Hermann, K, Kočiský, T, Grefenstette, E, Espeholt, L, Kay, W, Suleyman, M, Blunsom, P |
---|---|
Формат: | Journal article |
Опубликовано: |
Neural Information Processing Systems
2015
|
Схожие документы
-
The NarrativeQA Reading Comprehension Challenge
по: Tomáš Kočiský, и др.
Опубликовано: (2021-03-01) -
The neural noisy channel
по: Yu, L, и др.
Опубликовано: (2017) -
Semantic parsing with semi-supervised sequential autoencoders
по: Kočiský, T, и др.
Опубликовано: (2016) -
Learning Bilingual Word Representations by Marginalizing Alignments
по: Kočiský, T, и др.
Опубликовано: (2014) -
"Not not bad" is not "bad": A distributional account of negation
по: Hermann, K, и др.
Опубликовано: (2013)