Sequential Bayesian Estimation for Adaptive Classification
This paper proposes a robust algorithm to adapt a model for EEG signal classification using a modified Extended Kalman Filter (EKF). By applying Bayesian conjugate priors and marginalising the parameters, we can avoid the needs to estimate the covariances of the observation and hidden state noises....
主要な著者: | Yoon, J, Roberts, S, Dyson, M, Can, J, IEEE |
---|---|
フォーマット: | Conference item |
出版事項: |
2008
|
類似資料
-
Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling.
著者:: Yoon, J, 等
出版事項: (2009) -
Bayesian inference for an adaptive Ordered Probit model: an application to Brain Computer Interfacing.
著者:: Yoon, J, 等
出版事項: (2011) -
Sequential classification of mental tasks vs. idle state for EEG based BCIs
著者:: Dyson, M, 等
出版事項: (2009) -
Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing
著者:: Yoon, J, 等
出版事項: (2008) -
Sequential Bayesian prediction in the presence of changepoints
著者:: Garnett, R, 等
出版事項: (2009)