Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Auteurs principaux: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
IEEE Digital Library
2020
|
Documents similaires
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
par: Xu, Z, et autres
Publié: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
par: Xu, Z, et autres
Publié: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
par: Chen, C, et autres
Publié: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
par: Chen, C, et autres
Publié: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
par: Xu, Z, et autres
Publié: (2018)