Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Główni autorzy: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Format: | Conference item |
Język: | English |
Wydane: |
IEEE Digital Library
2020
|
Podobne zapisy
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
od: Xu, Z, i wsp.
Wydane: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
od: Xu, Z, i wsp.
Wydane: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
od: Chen, C, i wsp.
Wydane: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
od: Chen, C, i wsp.
Wydane: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
od: Xu, Z, i wsp.
Wydane: (2018)