Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Huvudupphovsmän: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
IEEE Digital Library
2020
|
Liknande verk
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
av: Xu, Z, et al.
Publicerad: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
av: Xu, Z, et al.
Publicerad: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
av: Chen, C, et al.
Publicerad: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
av: Chen, C, et al.
Publicerad: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
av: Xu, Z, et al.
Publicerad: (2018)